Heterotic little Strings, T-duality and 2-Groups

Paul-Konstantin Oehlmann

Uppsala Universitet

Based on upcoming works with M. del Zotto & M. Liu ¹

• arXiv:2207.XXXXX

String Phenomenology 2022 Liverpool, United Kingdom, 5th of July 2022

¹More details in Muyangs talk on Thursday

Why 6D Little String Theories (LSTs)?

6D SUSY theories great testing ground:

- Understand String Vacua/Landscape,
- Symmetries and non-perturbative phenomena

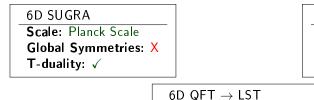
6D SUGRA Scale: Planck Scale Global Symmetries: X T-duality: √

 $6D \text{ QFT} \rightarrow \text{SCFT}$ Scale: No Scale Global Symmetries: ✓ T-duality: X

Why 6D Little String Theories (LSTs)?

6D SUSY theories great testing ground:

- Understand String Vacua/Landscape,
- Symmetries and non-perturbative phenomena



Scale: LST Scale Global Symmetries: \checkmark T-duality: \checkmark $6D \text{ QFT} \rightarrow \text{SCFT}$

Global Symmetries: ✓

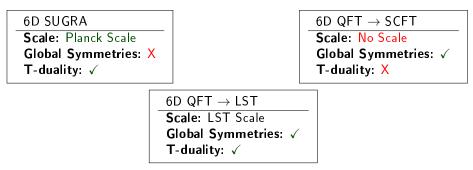
Scale: No Scale

T-duality: X

Why 6D Little String Theories (LSTs)?

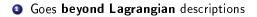
6D SUSY theories great testing ground:

- Understand String Vacua/Landscape,
- Symmetries and non-perturbative phenomena



Little Strings (LSTs) capture features of both SCFTs and SUGRAs:

- **()** LSTs have **Global symmetries** AND can be related via **T-duality**
- **2** Related by **decompactification**: SUGRA \rightarrow LSTs \rightarrow SCFTs
- Geometric control via F-theory [Bhardwaj, Del Zotto, Heckman, . Morrison, Rudelius, Vafa'15]



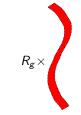
Higher form symmetries generalize group actions to act on *p*-dimensional operators C_p [Gaiotto, Kapustin, Seiberg, Willet'15]

Goes beyond Lagrangian descriptions

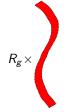
Higher form symmetries generalize group actions to act on *p*-dimensional operators C_p [Gaiotto, Kapustin, Seiberg, Willet'15] \mathbb{S}^{d-1-p}

O Goes **beyond Lagrangian** descriptions

Higher form symmetries generalize group actions to act on *p*-dimensional operators C_p [Gaiotto, Kapustin, Seiberg, Willet'15]



Goes beyond Lagrangian descriptions



- Goes beyond Lagrangian descriptions
- e Higher form symmetries of different form-degree mix to Higher groups

LSTs have generic continuous 2-group symmetry [Córdova, Dumitrescu, Intriligator '18]

2-Group Symmetry Structure Constants

$${}^{2}G_{P,R,F} = \left(P^{(0)} \times SU(2)_{R}^{(0)} \times G_{F}^{(0)}\right) \times_{\hat{\kappa}_{F},\hat{\kappa}_{P},\hat{\kappa}_{R}} \mathfrak{u}_{1}^{(1)},$$

The LST $u_1^{(1)}$ -1-form symmetry mixes with global 0-form symmetries of

LSTs have generic continuous 2-group symmetry [Córdova, Dumitrescu, Intriligator'18]

2-Group Symmetry Structure Constants

$$^{2}G_{P,R,F} = \left(P^{(0)} \times SU(2)^{(0)}_{R} \times G^{(0)}_{F}\right) imes_{\hat{\kappa}_{F},\hat{\kappa}_{P},\hat{\kappa}_{R}} \mathfrak{u}^{(1)}_{1},$$

The LST $u_1^{(1)}$ -1-form symmetry mixes with global 0-form symmetries of

- Poincare: $\kappa_P = \sum_i N_I(\eta^{I,I} 2)$
- **2** SU(2)_{*R*}: $\kappa_R = \sum_I N_I h_{G_I}^{v}$
- **3** Flavor: $\kappa_{F,A} = \sum_{I} N_{I} \eta^{I,A}$

LSTs have generic continuous 2-group symmetry [Córdova, Dumitrescu, Intriligator'18]

2-Group Symmetry Structure Constants

$$^{2}G_{P,R,F} = \left(P^{(0)} \times SU(2)^{(0)}_{R} \times G^{(0)}_{F}\right) imes_{\hat{\kappa}_{F},\hat{\kappa}_{P},\hat{\kappa}_{R}} \mathfrak{u}^{(1)}_{1},$$

The LST $\mathfrak{u}_1^{(1)}$ -1-form symmetry mixes with global 0-form symmetries of

- Poincare: $\kappa_P = \sum_i N_I(\eta^{I,I} 2)$
- **2** SU(2)_{*R*}: $\kappa_R = \sum_I N_I h_{G_I}^{v}$
- **3** Flavor: $\kappa_{F,A} = \sum_{I} N_{I} \eta^{I,A}$
- $\eta^{I,J}$: negative semi-definite Dirac Paring
- $h_{G_{I}}^{v}$: dual coxeter number of gauge group G_{I} coupled to I-th tensor
- N_i tensor charges under little string $\mathfrak{u}_1^{(1)}$

LSTs have generic continuous 2-group symmetry [Córdova, Dumitrescu, Intriligator'18]

2-Group Symmetry Structure Constants

$${}^{2}G_{\mathcal{P},\mathcal{R},\mathcal{F}}=\left(\mathcal{P}^{(0)}\times SU(2)_{\mathcal{R}}^{(0)}\times G_{\mathcal{F}}^{(0)}\right)\times_{\hat{\kappa}_{\mathcal{F}},\hat{\kappa}_{\mathcal{P}},\hat{\kappa}_{\mathcal{R}}}\mathfrak{u}_{1}^{(1)},$$

The LST $u_1^{(1)}$ -1-form symmetry mixes with global 0-form symmetries of

- Poincare: $\kappa_P = \sum_i N_I(\eta^{I,I} 2) \leftarrow \text{very constraining}$
- SU(2)_R: $\kappa_R = \sum_I N_I h_{G_I}^{\mathsf{v}} \leftarrow \text{very constraining}$
- **3** Flavor: $\kappa_{F,A} = \sum_{I} N_{I} \eta^{I,A}$
- $\eta^{I,J}$: negative semi-definite Dirac Paring
- $h_{G_{I}}^{v}$: dual coxeter number of gauge group G_{I} coupled to I-th tensor
- N_l tensor charges under little string $u_1^{(1)}$

T-dual LSTs should have matching structure constants [del Zotto, Ohmori'20]

LSTs have generic continuous 2-group symmetry [Córdova, Dumitrescu, Intriligator'18]

2-Group Symmetry Structure Constants

$${}^{2}G_{\mathcal{P},\mathcal{R},\mathcal{F}}=\left(\mathcal{P}^{(0)}\times SU(2)_{\mathcal{R}}^{(0)}\times \mathcal{G}_{\mathcal{F}}^{(0)}\right)\times_{\hat{\kappa}_{\mathcal{F}},\hat{\kappa}_{\mathcal{P}},\hat{\kappa}_{\mathcal{R}}}\mathfrak{u}_{1}^{(1)},$$

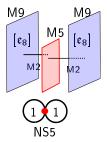
The LST $u_1^{(1)}$ -1-form symmetry mixes with global 0-form symmetries of

- Poincare: $\kappa_P = \sum_i N_I(\eta^{I,I} 2) \leftarrow \text{very constraining}$
- SU(2)_R: $\kappa_R = \sum_I N_I h_{G_I}^{\mathsf{v}} \leftarrow \text{very constraining}$

3 Flavor:
$$\kappa_{F,A} = \sum_{I} N_{I} \eta^{I,A}$$

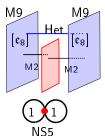
- $\eta^{I,J}$: negative semi-definite Dirac Paring
- $h_{G_{I}}^{v}$: dual coxeter number of gauge group G_{I} coupled to I-th tensor
- N_l tensor charges under little string $u_1^{(1)}$

T-dual LSTs should have matching structure constants [del Zotto, Ohmori 20] Goal: New T-dual Little strings and match 2-group Symmetries



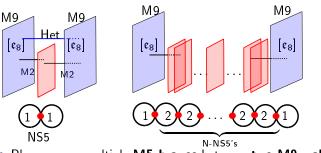
• Place one or multiple M5 branes between two M9 walls

[Haghighat, Lockhart, Vafa'14]

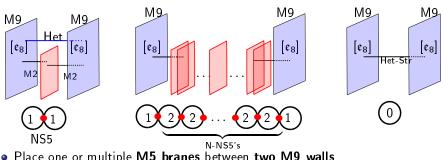


• Place one or multiple M5 branes between two M9 walls

[Haghighat, Lockhart, Vafa 14]

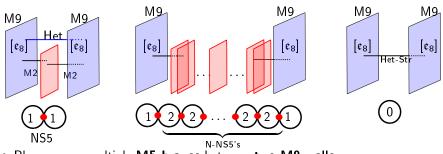


• Place one or multiple M5 branes between two M9 walls



- Place one or multiple M5 branes between two M9 walls
- Pure Heterotic String on "0" curve

[Haghighat, Lockhart, Vafa 14]



- Place one or multiple M5 branes between two M9 walls
- Pure Heterotic String on "0" curve

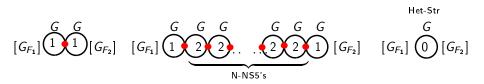
[Haghighat, Lockhart, Vafa 14]

- $E_8^2 Spin(32)/\mathbb{Z}_2$ Duality ightarrow Sp(N) gauge group [Aspinwall, Morrison '96]
- 2-group structure constants match ✓ [del Zotto, Ohmori'20]

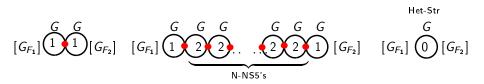
$$[G_{F_1}] \underbrace{ \begin{bmatrix} G & G \\ 1 \end{bmatrix} \begin{bmatrix} G_{F_2} \end{bmatrix} \begin{bmatrix} G_{F_1} \end{bmatrix} \underbrace{ \begin{bmatrix} G & G \\ 1 \end{bmatrix} \underbrace{ \begin{bmatrix} G & G \\ 2 \end{bmatrix} \underbrace{ E & G \\ 2 \end{bmatrix} \underbrace{ E & G \\ 2 \end{bmatrix} \underbrace{ E & E$$

• Gauging by adding G = ADE(BCFG) singularity

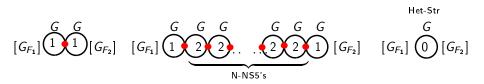
3 Specify two flat connections $\mu_i(E_8)$ breaking to $G_F = [\mu_i, E_8]$



- Gauging by adding G = ADE(BCFG) singularity
- **3** Specify two flat connections $\mu_i(E_8)$ breaking to $G_F = [\mu_i, E_8]$
- Leads to fractionalization, obtained by fusion of 6D SCFTs
 - M9-M5: $T(\mu_i, G)$ orbi-instanton theories [Kac 83, Frey 98 & Rudelius 18]
 - M5-M5: [G,G] Conformal matter theories [Del Zotto, Heckman, Tomasiello, Vafa 14]



- Gauging by adding G = ADE(BCFG) singularity
- **3** Specify two flat connections $\mu_i(E_8)$ breaking to $G_F = [\mu_i, E_8]$
- Leads to fractionalization, obtained by fusion of 6D SCFTs
 - M9-M5: $T(\mu_i, G)$ orbi-instanton theories [Kac 83, Frey 98 & Rudelius 18]
 - M5-M5: [G, G] Conformal matter theories [Del Zotto, Heckman, Tomasiello, Vafa 14]
- Predict T-dual theories by imposing match of 2-group constants!



- Gauging by adding G = ADE(BCFG) singularity
- **3** Specify two flat connections $\mu_i(E_8)$ breaking to $G_F = [\mu_i, E_8]$
- Leads to fractionalization, obtained by fusion of 6D SCFTs
 - M9-M5: $T(\mu_i, G)$ orbi-instanton theories [Kac 83, Frey 98 & Rudelius 18]
 - M5-M5: [G,G] Conformal matter theories [Del Zotto, Heckman, Tomasiello, Vafa 14]
- Predict T-dual theories by imposing match of 2-group constants!

Proof T-duality via Geometry

Construct **non-compact elliptic threefolds** over an LST base B₂:

$$\mathcal{E} \to X_3 \to B_2$$

²Base changes are not allowed

Construct **non-compact elliptic threefolds** over an LST base B₂:

 $\mathcal{E}
ightarrow X_3
ightarrow B_2$

F/M-theory and T-duality

T-duality: Two theories are the same upon circle compactification:

• F-theory on Circle = M-theory on X_3

 $\leftrightarrow X_3$ multiple elliptic fibrations

²Base changes are not allowed

Construct **non-compact elliptic threefolds** over an LST base B₂:

 $\mathcal{E} \to X_3 \to B_2$

F/M-theory and T-duality

T-duality: Two theories are the same upon circle compactification:

• F-theory on Circle = M-theory on X_3

 $\leftrightarrow X_3$ multiple elliptic fibrations

• Heterotic LST: X_3 is Elliptic K3 fibration over \mathbb{C} \leftrightarrow identified by 2-group constant $K_P = 2$!

²Base changes are not allowed

Construct **non-compact elliptic threefolds** over an LST base B₂:

 $\mathcal{E}
ightarrow X_3
ightarrow B_2$

F/M-theory and T-duality

T-duality: Two theories are the same upon circle compactification:

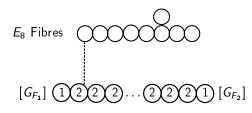
• F-theory on Circle = M-theory on X_3

 $\leftrightarrow X_3$ multiple elliptic fibrations

- Heterotic LST: X₃ is Elliptic K3 fibration over C
 ↔ identified by 2-group constant K_P = 2 !
- Flavor groups bound to be $G_F \in \Lambda_{K3} \in \text{Pic}_{K3}$
- $\textbf{O} \quad \textbf{T-dual LSTs} \leftrightarrow \textbf{elliptic fibrations in fixed K3} \quad \textbf{[Braun, Kimura, Watari'13/14]}$
- Gaugings are Kulikov II/III degenerations² [Braun, Watari 16; Lee, Weigand 21]

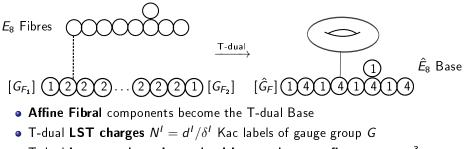
²Base changes are not allowed

Construction of T-dual theories using toric geometry and (semi-)convex polytopes [Huang Taylor'18, Anderson, Gao, Gray, Lee'16]



³for large enough NS5 brane number

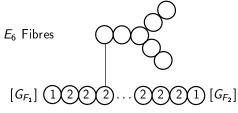
Construction of T-dual theories using toric geometry and (semi-)convex polytopes [Huang Taylor'18, Anderson, Gao, Gray, Lee'16]



T-dual base topology determined by gauging, not flavor groups ³

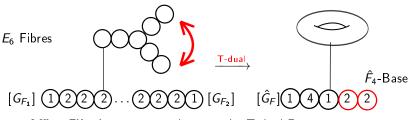
³for large enough NS5 brane number

Fibre Base duality holds for all gaugings G



• Affine Fibral components become the T-dual Base

Fibre Base duality holds for all gaugings G



- Affine Fibral components become the T-dual Base
- Base topology reduced by \hat{G} automorphisms [Blum, Intrilligator '96]
- No clear field theory reason why?

Summary and Conclusion

Considered 6D (T-dual) heterotic Little String Theories

Summary

- **O Predict new T-dual pairs** by imposing match of **2-group symmetries**
- 2 Proofen the duality via geometric engineering
- **•** Fractionalization of single NS5 brane and pure heterotic string by G ADEs

Highlights

- **(3)** Fibre base dualities, sometimes reduced by \hat{G} automorphism
- **3** Multi-T-Duals (some are self-dual) if $\mu_i(E_8)$ non-trivial

Summary and Conclusion

Considered 6D (T-dual) heterotic Little String Theories

Summary

- **O Predict new T-dual pairs** by imposing match of **2-group symmetries**
- 2 Proofen the duality via geometric engineering
- **•** Fractionalization of single NS5 brane and pure heterotic string by G ADEs

Highlights

- **()** Fibre base dualities, sometimes reduced by \hat{G} automorphism
- **3** Multi-T-Duals (some are self-dual) if $\mu_i(E_8)$ non-trivial

Outlook

- Twisted T-dualities
- Non-heterotic LSTs and their T-duals
- Complete Classification